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The Cauchy-Binet formula

Summer 2004

1. Introduction The theorem that the determinant of a product of square matrices is the product
of the determinants of the factors isso memorablethat one is likely to lose sight ofthe difficulty of its proof .
One proof uses Gaussian elimination to write a matrix as a product of elementary matrices and exploits the
fact that left multiplication by an elementary matrix gives a row operation whose effect on the determinant
is known. This means that det(AX)must be a constant multiple of det(X). Applying this to the special case
whereX is the identity shows that the multiplier must be det(A).

There is a more tedious proof, in the spirit of the use of linearity to obtain the full expansion of a
determinant, that can be used to evaluate det(AB) whenA is anm by n matrix andB is ann by m matrix.
The patience with the proof is rewarded with a stronger theorem. The expression in this theorem will reduce
to zero ifm> n, for thenAB is certainly a singular matrix.

2. The Cauchy-Binet formula We follow F. R. Gantmacher,The Theory of Matrices,
Chelsea, 1990 (except for inverting the names of the creators of the formula to agree with present usage).
The expressions that appear will initially be indexed by all functionsφ from {1, . . . ,m} to {1, . . . ,n}, but
only those functionsψ for which ψ(1) < · · · < ψ(m) will appear in the final formula. For each such
function, we use its valuesψ(1), . . . , ψ(m) to selectm columns ofA to form anm by m matrix Aψ , and
thecorresponding rowsof B to form anm by m matrix Bψ . Then, the desired formula is

det(AB) =

∑
ψ

det(Aψ )det(Bψ ). (1)

3. First part of the proof Here, we explore the dependence on the first factor, by building
a formula by processing them rows of A in order. The proof will be an induction on the number of rows
that have already been processed, which we denote byk. The basis of the induction will be the casek = 0,
in which we have only theuntouchedmatrix AB.

In the induction step, fromk = j to k = j + 1, each term will split inton different terms, which will
be identified with the value to be assigned toφ( j + 1) for that term . When the process is done, we will
want each term to be matched with a functionφ from {1, . . . ,m} to {1, . . . ,n}. To reach such a conclusion,
thestatementof the inductive step includes a requirement that, afterk steps, det(AB) is a sum ofnk terms
indexed by the restriction ofφ to {1, . . . , k}. The description just given of the basis of the induction has this
property. A further property that must be included in the statement will be identified in the description of
the induction step.

For the induction step, consider the dependence of det(AB) on row j + 1. In the discussion of the
defining properties of determinants, it was noted that this is a linear function. However, the rules of matrix
multiplication tell us that rowj + 1 of AB is

∑n
l=1 a( j +1) l Bl , whereBl is thel th row of B. Thus det(AB)

is a sum ofn terms, each of which isa( j +1) l times the determinant of the matrix that results from replacing
row j + 1 of AB by thel th row of B. Selecting thel th term corresponds to restricting to functions with
φ( j + 1) = l , and the factor coming fromA in this term isa( j +1) φ( j +1). The additional property preserved
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by this construction is that the terms consist of the product of (a specific set of)k entries ofA and a matrix
whose firstk rows are (specific) rows ofB with row l for l > k being rowl of AB.

After all rows has been processed in this manner, we havemn terms indexed by functionsφ each of
which multiplies the single term

m∏
i =1

aiφ(i )

formed from elements ofA with a determinant built from the rowsφ(i ) for i = 1, . . . ,m of B

4. Cancellation and permutation If a matrix has two equal rows, its determinant is
zero. Thus, ifφ(i ) = φ( j ) for somei 6= j , the term corresponding toφ is zero. Dropping these terms out
of the sum restricts to one-to-one functionsφ. In particular, the fact that det(AB) = 0 if m > n has now
been proved, since all terms have been shown to be zero.

We also know that interchanging two rows of a matrix changes the sign of the determinant. Thus all
φ with the sameset of values{φ(1), . . . , φ(m)} have closely related contributions fromB. Sorting these
values expressesφ in the formσ Bψ , whereψ is an increasing function andσ is a permutation of the range
of ψ .

We now collect those terms with the sameψ . This amounts to selecting theset of rowsof B that we
will use. Looking back at the full expansion, we see that these values also tell us which columns ofA will
be used. The functionψ is just astandard way to describe a setof m elements selected from{1, . . . ,n}.
Focusing on a singleψ , the terms corresponding toφ of the formσ B ψ now reduce to(∑

σ

(−1)sgn(σ )a1φ(1) · · · amφ(m)

)
det(Bψ ).

In this process, the contribution ofB was limited to selecting sets ofm rows and using the property that
an interchange of rows of a determinant changes the sign. In particular, ifB is zero except for a 1 in each
(ψ(i ), i ) position (i = 1, . . . ,m), thenAB is the submatrixAψ of A and the formula just found is the usual
expansion of the determinant of this submatrix. This completes the proof of the formula. In this proof, we
considered det(AB) as a function of avariable matrix B determined by the entries ofA.

5. Conclusion, a special case. We close with an interesting special case. Suppose
A = BT. Then det(BT B) gives thesquareof them dimensional volume of the parallelepiped inRn with the
columns ofB as edges. This was proved inApplication 3 in Section 4.4by a geometric argument inspired
by the Gram-Schmidt process. In this proof,BT B collect information about theintrinsic geometry of the
parallelepiped. The entries are just the inner products of vectors giving the edges of the figure, so that the
diagonal gives the squares of the length of the edges and the other entries alow the angles between the edges
to be found. This information is preserved if the coordinates are changed to a system determined by the
position of the figure in space. In this coordinate system, the volume is compared to that of a related figure
in which the edges are mutually perpendicular.

On the other hand, for the Cauchy-Binet formula,Aψ = (Bψ )T, so det(Aψ ) = det(Bψ ), and the
formula reduces to

det(BT B) =

∑
ψ

det(Bψ )
2. (2)

This says that the square of the volume is the sum of the squares of the volumes of the projections of the
figure into all possiblem dimensional coordinate planes.

The casem = 1 of this is the Pythagorean formula, and the case wherem = 2 andn = 3 arises in
showing the connection of the cross product of vectors with areas of plane figures inR3.
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6. Exercises A. Find the area of the parallelogram inR4 whose sides are
1
1
1
1

 and


−1

1
1

−1


by letting B be the 4 by 2 matrix with these columns, so the volume is det(BT B), and then:

(i) finding BT B and evaluating its determinant; and
(ii) using formula(2).

Both calculations should be easy, and you should get the same answer.

B. Find the area of the three dimensional parallelepiped inR4 whose sides are
−1

1
0
0




−1
0
1
0




−1
0
0

−1


by letting B be the 4 by 3 matrix with these columns, so the volume is det(BT B), and then:

(i) finding BT B and evaluating its determinant; and
(ii) using formula(2).

Again, both calculations should give the same answer.
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